
Midterm Exam Study Guide

This study guide does not imply that any topics/slides that are not mentioned are

excluded.

The objective is to guide you while studying by focusing on certain topics that might have

a high weight with regard to the midterm exam.

Please note:

MCQ & T/F will come from all chapters

Short Answer Q. will be from Chapters 1, 2, 6, 7, 8, 10 and 11

Long Answer Q. will be from Chapter 4&5

Edit By Ghannam 1

Chapter 1

 The Nature of Software

Edit By Ghannam 2

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

3

Legacy Software

■ software must be adapted to meet the needs
of new computing environments or
technology.

■ software must be enhanced to implement new
business requirements.

■ software must be extended to make it
interoperable with other more modern
systems or databases.

■ software must be re-architected to make it
viable within a network environment.

Why must it change?

Why must Legacy Software change?

Edit By Ghannam 3

4

Cloud Computing

■ Cloud computing provides distributed data storage and processing

resources to networked computing devices

■ Computing resources reside outside the cloud and have access to

a variety of resources inside the cloud

■ Cloud computing requires developing an architecture containing

both frontend and backend services

■ Frontend services include the client devices and application

software to allow access ((مهم))
■ Backend services include servers, data storage, and server-

resident applications

■ Cloud architectures can be segmented to restrict access to private

data

what is Cloud Computing? What service is provided? benefits?

Edit By Ghannam 4

5

Product Line Software

■ Product line software is a set of software-intensive systems that

share a common set of features and satisfy the needs of a

particular market

■ These software products are developed using the same

application and data architectures using a common core of

reusable software components

■ A software product line shares a set of assets that include
requirements, architecture, design patterns, reusable
components, test cases, and other work products ((مهم))

■ A software product line allow in the development of many
products that are engineered by capitalizing on the commonality
among all products with in the product line

what is PLS? What service is provided? benefits?

Edit By Ghannam 5

6

Characteristics of WebApps - II

■ Data driven. The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to
the end-user.

■ Content sensitive. The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

■ Continuous evolution. Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously.

■ Immediacy. Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks.

■ Security. Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application.

■ Aesthetics. An undeniable part of the appeal of a WebApp is its
look and feel.

List the Characteristics of WebApps? explain?

Edit By Ghannam 6

Chapter 2

 Software Engineering

Edit By Ghannam 7

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 8

A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

List the Software Engineering Layered Technology?

9

Umbrella Activities
1- Software project tracking and control

2- Risk management

3- Software quality assurance

4- Technical reviews

5- Measurement

6- Software configuration management

7- Reusability management

8- Work product preparation and production

List the Umbrella Activities?

Edit By Ghannam 9

10

Hooker’s General Principles

■ 1: The Reason It All Exists

■ 2: KISS (Keep It Simple, Stupid!)

■ 3: Maintain the Vision

■ 4: What You Produce, Others Will Consume

■ 5: Be Open to the Future

■ 6: Plan Ahead for Reuse

■ 7: Think!

List the General Principles for Software Engineering?

Edit By Ghannam 10

Edit By Ghannam 11

Chapter 4 & Chapter 5 Important

Concepts

 Process Models

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 12

The Waterfall Model

Communicat ion

Planning

Modeling

Const ruct ion
Deployment

analysis

design
code

t est

project init iat ion

requirement gat hering estimating

scheduling

tracking

delivery

support

f eedback

List out the stages of Waterfall Model? (مهم)

1-Communication 2-Planning 3-Modeling

4-Construction 5-Deployment

Edit By Ghannam 13

Evolutionary Models: The Spiral

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

The Spiral from which Model? ((Evolutionary Model))

Edit By Ghannam 14

Agility and the Cost of Change

The cost of change increases nonlinearly as the

project progresses

Edit By Ghannam 15

An Agile Process

 Is driven by customer descriptions of what is

required (scenarios)

 Recognizes that plans are short-lived

 Develops software iteratively with a heavy

emphasis on construction activities

 Delivers multiple ‘software increments’

 Adapts as changes occur

What is an Agile Process? (مهم)

Edit By Ghannam 16

Extreme Programming (XP)

 What is the Extreme Programming (XP)?

 What is the XP Process?

 What is XP Planning?

 What is XP Design steps?

 What is XP Coding steps?

 What is XP Testing steps?

Edit By Ghannam 17

Extreme Programming (XP) (مهم)

 The most widely used agile process, originally proposed by Kent

Beck

 XP Planning

 Begins with the creation of “user stories”

 Agile team assesses each story and assigns a cost

 Stories are grouped to for a deliverable increment

 A commitment is made on delivery date

 After the first increment “project velocity” is used to help define

subsequent delivery dates for other increments

Edit By Ghannam 18

Extreme Programming (XP) (مهم)

 XP Design

 Follows the KIS principle

 Encourage the use of CRC cards (see Chapter 8)

 For difficult design problems, suggests the creation of “spike
solutions”—a design prototype

 Encourages “refactoring”—an iterative refinement of the internal
program design

 XP Coding

 Recommends the construction of a unit test for a store before
coding commences

 Encourages “pair programming”

 XP Testing

 All unit tests are executed daily

 “Acceptance tests” are defined by the customer and excuted to
assess customer visible functionality

Edit By Ghannam 19

Extreme Programming (XP)

unit t est

cont inuous int egrat ion

accept ance t est ing

pair

programming

Release

user st ories

 values

 accept ance t est crit eria

it erat ion plan

simple design

 CRC cards

spike solut ions

 prot ot ypes

refact oring

sof tware increment

project velocit y computed

Edit By Ghannam 20

Chapter 6

 Human Aspects of Software Engineering

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 21

Boundary Spanning

Team Roles

 Ambassador – represents team to

outside constituencies ((مهم))

 Scout – crosses team boundaries to

collect information

 Guard – protects access to team work

products

 Sentry – controls information sent by

stakeholders

 Coordinator – communicates across the

team and organization

ارجيمثل الفريق في الخ–السفير •

يجمع المعلومات: الكشاف•

يحمي الوصول إلى –الحارس •

منتجات فريق العمل

تالمعلوماعلىالسيطرة–الخفير •

أصحاب المصلحةقبلمنالمرسلة

التواصل بين الفريق–المنسق •

والمنظمة

مهم معرفه كل شخص ومسئولياته

Edit By Ghannam 22

Avoid Team “Toxicity”
 A frenzied work atmosphere in which team members

waste energy and lose focus on the objectives of the

work to be performed.

 High frustration caused by personal, business, or

technological factors that cause friction among team

members.

 “Fragmented or poorly coordinated procedures” or a

poorly defined or improperly chosen process model that

becomes a roadblock to accomplishment.

 Unclear definition of roles resulting in a lack of

accountability and resultant finger-pointing.

 “Continuous and repeated exposure to failure” that

leads to a loss of confidence and a lowering of morale.

List environment characteristics that can be considered

toxic to software teams?

Edit By Ghannam 23

Organizational Paradigms
 closed paradigm—structures a team along a traditional

hierarchy of authority

 random paradigm—structures a team loosely and

depends on individual initiative of the team members

 open paradigm—attempts to structure a team in a

manner that achieves some of the controls associated

with the closed paradigm but also much of the innovation

that occurs when using the random paradigm

 synchronous paradigm—relies on the natural

compartmentalization of a problem and organizes team

members to work on pieces of the problem with little

active communication among themselves

suggested by Constantine [Con93]

List the Organizational Paradigms?

Edit By Ghannam 24

Team Decisions Making Complications

 Problem complexity

 Uncertainty and risk associated with the decision

 Work associated with decision has unintended

effect on another project object (law of unintended

consequences)

 Different views of the problem lead to different

conclusions about the way forward

 Global software teams face additional challenges

associated with collaboration, coordination, and

coordination difficulties

Edit By Ghannam 25

Chapter 7

 Principles that Guide Practice

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 26

Communication Principles

 Principle #1. Listen. Try to focus on the speaker’s words, rather than
formulating your response to those words.

 Principle # 2. Prepare before you communicate. Spend the time to
understand the problem before you meet with others.

 Principle # 3. Someone should facilitate the activity. Every
communication meeting should have a leader (a facilitator) to keep the
conversation moving in a productive direction; (2) to mediate any conflict that
does occur, and (3) to ensure than other principles are followed.

 Principle #4. Face-to-face communication is best. But it usually works
better when some other representation of the relevant information is present.

List the Communication Principles? (مهم)

Edit By Ghannam 27

Planning Principles

 Principle #1. Understand the scope of the project. It’s impossible to use
a roadmap if you don’t know where you’re going. Scope provides the
software team with a destination.

 Principle #2. Involve the customer in the planning activity. The
customer defines priorities and establishes project constraints.

 Principle #3. Recognize that planning is iterative. A project plan is never
engraved in stone. As work begins, it very likely that things will change.

 Principle #4. Estimate based on what you know. The intent of estimation
is to provide an indication of effort, cost, and task duration, based on the
team’s current understanding of the work to be done.

List the Planning Principles? (مهم)

Edit By Ghannam 28

Agile Modeling Principles

 Principle #1. The primary goal of the software team
is to build software not create models.

 Principle #2. Travel light – don’t create more models
than you need.

 Principle #3. Strive to produce the simplest model
that will describe the problem or the software.

 Principle #4. Build models in a way that makies
them amenable to change.

 Principle #5. Be able to state an explicit purpose for
each model that is created.

List the Agile Modeling Principles? (مهم)

Edit By Ghannam 29

Construction Principles

 The construction activity encompasses a set of coding and

testing tasks that lead to operational software that is ready for

delivery to the customer or end-user.

 Coding principles and concepts are closely aligned

programming style, programming languages, and programming

methods.

 Testing principles and concepts lead to the design of tests that

systematically uncover different classes of errors and to do so

with a minimum amount of time and effort.

List the Construction Principles?

Edit By Ghannam 30

Coding Principles

 As you begin writing code, be sure you:
• Constrain your algorithms by following structured programming [Boh00] practice.

• Consider the use of pair programming

• Select data structures that will meet the needs of the design.

• Understand the software architecture and create interfaces that are consistent with it.

• Keep conditional logic as simple as possible.

• Create nested loops in a way that makes them easily testable.

• Select meaningful variable names and follow other local coding standards.

• Write code that is self-documenting.

• Create a visual layout (e.g., indentation and blank lines) that aids understanding.

List the Coding Principles?

Edit By Ghannam 31

Deployment Principles

 Principle #1. Customer expectations for the
software must be managed.

 Principle #2. A complete delivery package should be
assembled and tested.

 Principle #3. A support regime must be established
before the software is delivered.

 Principle #4. Appropriate instructional materials
must be provided to end-users.

 Principle #5. Buggy software should be fixed first,
delivered later.

List the Deployment Principles?

Edit By Ghannam 32

Chapter 8

 Understanding Requirements

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 33

Requirements Engineering-I

 Inception—ask a set of questions that establish …

 basic understanding of the problem

 the people who want a solution

 the nature of the solution that is desired, and

 the effectiveness of preliminary communication and collaboration

between the customer and the developer

 Elicitation—elicit requirements from all stakeholders

 Elaboration—create an analysis model that identifies data,

function and behavioral requirements

 Negotiation—agree on a deliverable system that is realistic for

developers and customers

List the requirements engineering process steps? Explain

(مهم)

Edit By Ghannam 34

Requirements Engineering-II
 Specification—can be any one (or more) of the following:

 A written document

 A set of models

 A formal mathematical

 A collection of user scenarios (use-cases)

 A prototype

 Validation—a review mechanism that looks for

 errors in content or interpretation

 areas where clarification may be required

 missing information

 inconsistencies (a major problem when large products or systems
are engineered)

 conflicting or unrealistic (unachievable) requirements.

 Requirements management

Edit By Ghannam 35

Eliciting Requirements

 meetings are conducted and attended by both software
engineers and customers

 rules for preparation and participation are established

 an agenda is suggested

 a "facilitator" (can be a customer, a developer, or an outsider)
controls the meeting

 a "definition mechanism" (can be work sheets, flip charts, or wall
stickers or an electronic bulletin board, chat room or virtual
forum) is used

 the goal is

 to identify the problem

 propose elements of the solution

 negotiate different approaches, and

 specify a preliminary set of solution requirements

1-list the requirements elicitation strategy?

2-list the goal of requirements elicitation strategy?

Edit By Ghannam 36

Negotiating Requirements

 Identify the key stakeholders

 These are the people who will be involved in the negotiation

 Determine each of the stakeholders “win conditions”

 Win conditions are not always obvious

 Negotiate

 Work toward a set of requirements that lead to “win-win”

List the Negotiating Requirements?

Edit By Ghannam 37

Requirements Monitoring

Especially needes in incremental development

 Distributed debugging – uncovers errors and determines their cause.

 Run-time verification – determines whether software matches its

specification.

 Run-time validation – assesses whether evolving software meets user

goals.

 Business activity monitoring – evaluates whether a system satisfies

business goals.

 Evolution and codesign – provides information to stakeholders as the

system evolves.

List and explain the Requirements Monitoring Task? (مهم)

Edit By Ghannam 38

Chapter 9

 Requirements Modeling: Scenario-Based

Methods

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 39

Requirements Analysis
 Requirements analysis

 specifies software’s operational characteristics

 indicates software's interface with other system elements

 establishes constraints that software must meet

 Requirements analysis allows the software engineer (called an analyst or

modeler in this role) to:

 elaborate on basic requirements established during earlier requirement

engineering tasks

 build models that depict user scenarios, functional activities, problem classes and

their relationships, system and class behavior, and the flow of data as it is

transformed.

Edit By Ghannam 40

Elements of Requirements Analysis

Edit By Ghannam 41

Requirements Modeling

 Scenario-based
 system from the user’s point of view

 Data
 shows how data are transformed inside the system

 Class-oriented
 defines objects, attributes, and relationships

 Flow-oriented
 shows how data are transformed inside the system

 Behavioral
 show the impact of events on the system states

List the Requirements Modeling? ((مهم))

Edit By Ghannam 42

Domain Analysis

Software domain analysis is the identification,

analysis, and specification of common

requirements from a specific application domain,

typically for reuse on multiple projects within that

application domain . . . [Object-oriented domain

analysis is] the identification, analysis, and specification

of common, reusable capabilities within a specific

application domain, in terms of common objects,

classes, subassemblies, and frameworks . . .

Donald Firesmith

Explain the meaning of software domain analysis? (مهم)

Edit By Ghannam 43

Activity Diagram

enter password

and user ID

select major funct ion

valid passwor ds/ ID

prompt for reent ry

invalid passwor ds/ ID

input t r ies r em ain

no input

t r ies r em ain

select surveillance

ot her f unct ions

m ay also be

select ed

t hum bnail views select a specif ic cam er a

select camera icon

prompt for

another v iew

select specif ic

camera - thumbnails

exit t his f unct ion
see anot her cam er a

view camera output

in labelled window

Supplements the
use case by
providing a
graphical
representation of
the flow of
interaction within a
specific scenario

Edit By Ghannam 44

Chapter 10

 Requirements Modeling: Class-Based Methods

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 45

Requirements Modeling Strategies

 One view of requirements modeling, called structured analysis, considers

data and the processes that transform the data as separate entities.

 Data objects are modeled in a way that defines their attributes and relationships.

 Processes that manipulate data objects are modeled in a manner that shows how

they transform data as data objects flow through the system.

 A second approach to analysis modeled, called object-oriented analysis,
focuses on

 the definition of classes and

 the manner in which they collaborate with one another to effect customer

requirements.

List Requirements Modeling Strategies?

Edit By Ghannam 46

Manifestations of Analysis Classes

 Analysis classes manifest themselves in one of the
following ways:

• External entities (e.g., other systems, devices, people) that
produce or consume information

• Things (e.g, reports, displays, letters, signals) that are part of
the information domain for the problem

• Occurrences or events (e.g., a property transfer or the
completion of a series of robot movements) that occur within
the context of system operation

• Roles (e.g., manager, engineer, salesperson) played by
people who interact with the system

• Organizational units (e.g., division, group, team) that are
relevant to an application

• Places (e.g., manufacturing floor or loading dock) that
establish the context of the problem and the overall function

• Structures (e.g., sensors, four-wheeled vehicles, or
computers) that define a class of objects or related classes of
objects

What types of nouns resulting from a grammatical parse

should be considered as potential analysis classes?

Edit By Ghannam 47

Potential Classes

 Retained information. The potential class will be useful during analysis only if information about it
must be remembered so that the system can function.

 Needed services. The potential class must have a set of identifiable operations that can change
the value of its attributes in some way.

 Multiple attributes. During requirement analysis, the focus should be on "major" information; a
class with a single attribute may, in fact, be useful during design, but is probably better
represented as an attribute of another class during the analysis activity.

 Common attributes. A set of attributes can be defined for the potential class and these attributes
apply to all instances of the class.

 Common operations. A set of operations can be defined for the potential class and these
operations apply to all instances of the class.

 Essential requirements. External entities that appear in the problem space and produce or
consume information essential to the operation of any solution for the system will almost always
be defined as classes in the requirements model.

List the characteristics that should be considered when considering

potential classes for inclusion in an analysis model ?

Edit By Ghannam 48

CRC Models

 Class-responsibility-collaborator (CRC) modeling [Wir90]

provides a simple means for identifying and organizing the

classes that are relevant to system or product requirements.

Ambler [Amb95] describes CRC modeling in the following way:

 A CRC model is really a collection of standard index cards that represent

classes. The cards are divided into three sections. Along the top of the

card you write the name of the class. In the body of the card you list

the class responsibilities on the left and the collaborators on

the right.

What is CRC Models?

Describe the roles of the three sections of CRC (class

responsibility collaborator) cards? (مهم)

Edit By Ghannam 49

Class Types
 Entity classes, also called model or business classes, are

extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor).

 Boundary classes are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and
interacts with as the software is used.

 Controller classes manage a “unit of work” [UML03] from start to
finish. That is, controller classes can be designed to manage

 the creation or update of entity objects;

 the instantiation of boundary objects as they obtain information from
entity objects;

 complex communication between sets of objects;

 validation of data communicated between objects or between the
user and the application.

List three types of classes that may be present in the

analysis model.

Edit By Ghannam 50

Collaborations
 Classes fulfill their responsibilities in one of two ways:

 A class can use its own operations to manipulate its own

attributes, thereby fulfilling a particular responsibility, or

 a class can collaborate with other classes.

 Collaborations identify relationships between classes

 Collaborations are identified by determining whether a class

can fulfill each responsibility itself

 three different generic relationships between classes [WIR90]:

 the is-part-of relationship

 the has-knowledge-of relationship

 the depends-upon relationship

List three different generic relationships between classes ?

Edit By Ghannam 51

Chapter 11

 Requirements Modeling: Behavior, Patterns, and

Web/Mobile Apps

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman and Bruce R. Maxim

Slides copyright © 1996, 2001, 2005, 2009, 2014 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 8/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

Edit By Ghannam 52

Behavioral Modeling

 The behavioral model indicates how software will

respond to external events or stimuli. To create the

model, the analyst must perform the following steps:

• Evaluate all use-cases to fully understand the sequence of

interaction within the system.

• Identify events that drive the interaction sequence and

understand how these events relate to specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy and

consistency.

1-What is Behavioral Modeling?

2-list the steps to create the Behavioral Modeling?

Edit By Ghannam 53

State Representations
 In the context of behavioral modeling, two different characterizations of states

must be considered:

 the state of each class as the system performs its function and

 the state of the system as observed from the outside as the system performs its
function

 The state of a class takes on both passive and active characteristics
[CHA93].

 A passive state is simply the current status of all of an object’s attributes. ((مهم))
 The active state of an object indicates the current status of the object as it

undergoes a continuing transformation or processing. ((مهم))

Edit By Ghannam 54

The States of a System
 state—a set of observable circum-

stances that characterizes the behavior

of a system at a given time

 state transition—the movement from one

state to another

 event—an occurrence that causes the

system to exhibit some predictable form

of behavior

 action—process that occurs as a

consequence of making a transition

List The States of a System?

Or T/F ,MCQ (مهم)

Edit By Ghannam 55

The Content Model

 Content objects are extracted from use-cases ((مهم))

 examine the scenario description for direct and indirect references to

content

 Attributes of each content object are identified

 The relationships among content objects and/or the hierarchy of

content maintained by a WebApp

 Relationships—entity-relationship diagram or UML

 Hierarchy—data tree or UML

Edit By Ghannam 56

The Interaction Model

 Composed of four elements:

 use-cases

 sequence diagrams

 state diagrams

 a user interface prototype

 Each of these is an important UML notation and is described in

Appendix I

List The Interaction Model component

